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The classical engineering theory of bending due to Bernoulli and

Euler serves as a cornerstone for structural analysis and design.

Limitations of this theory, however become apparent in flexural wave

propagation studies; it predicts infinite phase velocity as the wavelength

becomes shorter. This theoretical deficiency is corrected by Timoshenko

theory which accounts for transverse shear deformation. A thorough study

of several exact elasticity solutions reveals that there are two additional

effects that are of the same order as transverse shear in bending behavior.

These are due to (a) transverse normal strain and (b) an additional

cont ribti-oi to a6ial itres. A new engineering bending theory wbihch.

-aecouavs--far--theae is presented. Predictions of static bending response

using this theory agree exactly with elasticity solutions for several

uniformly distributed loading cases. The contributions due to various

physical effects are found to be more pronounced for orthotropic materials

with low shear and transverse extensional moduli. Such properties are

typical of advanced composite materials used in the aerospace industry.

The theory is extended to study the dynamic behavior of beams and static

buckling of columns.

Validation for the theory is provided by analysis of classic

benchmark problems - - - a simply supported beam under sinusoidally

distributed loading and flexural wave propagation in rectangular slabs.

Numerous applications are presented. Effects of property degradation due

to hygrothermal conditioning on the behavior of several elementary

unidirectional composite structures are studied. The hygrothermal

condition used to simulate long term aircraft service does not pose a

serious problem. The loss of performance is approximately ten percent.

However, complete moisture saturation produces significant effects.

Reductions in the performance up to 35 percent can be expected, thus

indicating that this condition should be avoided. $-
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SUMKARY

The classical engineering theory of bending due to Bernoulli and

Euler dates back to 1705 and precedes the theory of elasticity by over 100

years. It has long been recognized as a convenient approximation for

slender beaus and serves as a cornerstone for structural analysis and

design.

Limitations of engineering bending theory become apparent in

studying the propagation of elastic flexural waves of short wavelength.

The Bernoulli-Euler theory predicts infinite phase velocity for harmonic

waves as the wavelength becomes shorter. This result is of course,

physically absurd. This theoretical deficiency is corrected by the theory

proposed by Timoshenko. In Timoshenko theory, the influence of transverse

shear deformations are accounted for, which results in a finite limit for

phase velocity.

A thorough study of several exact elasticity solutions reveals that

there are two additional effects that are of the same order as transverse

shear in bending behavior. These are due to transverse normal strain and

an additional term in the axial stress. A new engineering theory of planar

bending which accounts for these is presented in this work. Predictions of

static beam bending response using the new equations agree exactly with

elasticity solutions for several uniformly distributed loading cases. The

theory is validated by means of a thorough consistency analysis and by

comparing with an exact solution to a nonuniform loading case.



The theory is extended to dynamics and validated through a

consistency analysis. It is applied to study flexural wave propagation in

slabs and vibration behavior of beams. The theory is validated

quantitatively by comparing with the classic benchmark problem - - -

flexural wave propagation in slabs. The results indicated superior range

of applicability compared to Timoshenko or Bernoulli-Euler theories. The

theory is further established by extracting Stephen and Levinson's theory

specialized to thin rectangular beams from the new dynamic equations.

An elementary theory to static buckling analysis and preliminary

estimates of buckling loads are provided for simply supported columns.

Results are in general agreement with Timoshenko theoretical predictions.

Applications of practical interest are provided through the study

of hygrothermal effects on the flexural behavior of composite beams of

unidirectional layup. Hygrothermally degraded mechanical properties are

used in computing the response under static and dynamic situations.

A summary of the conclusions based on the results and suggestions

for future work are provided.



CHAPTER I

INTRODUCTION

Use of fiber reinforced resin matrix composite materials in

aerospace vehicles is increasing. This is primarily due to their superior

mechanical properties and the ease with which they can be tailored to a

specific application. The properties of composites depend on the

individual properties of the constituents and the manner in which the

fibers are utilized. The most structurally efficient type of laminated

composite is composed of layers of unidirectional continuous fibers. In

this case, mechanical properties depend also upon the fiber orientation,

which may be chosen arbitrarily. This permits tailoring to specific design

requirements.

The directional nature of the composite material's mechanical

properties poses unique challenges for the analyst. Consider, for example,

a single layer or lamina made of a composite material. The extensional

modulus along the direction of fibers is usually very large relative to the

extensional moduli in the lateral directions and the shear oduli. This is

a marked departure from conventional isotropic materials. The result is

that the relative importance of physical effects is influenced by the

directional nature of properties and their relative magnitude. Transverse

shear deformations, for example, are much more pronounced for composite

structures.

Transverse shear deformation effects in connection with beam and
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plate bending have been studied extensively. Hovever, there still is no

unique way of accounting for them. An engineering theory which includes

them in a simple, rational way is desirable. This is a primary objective

of the present work.

Currently, considerable research activity in the area of composite

materials is directed towards the study of hygrothermal effects and three-

dimensional effects such as delamination. Resin matrix materials absorb

moisture, particularly in elevated temperature environments. As a result,

the matrix softens and matrix controlled properties show significant

degradation. This is due to a lowering of glass transition temperature of

the resin matrix material. The resulting degradation of stiffness-related

and strength-related properties is a serious problem for designers.

Other problem of considerable concern are attributed to three-

dimensional effects. Two such problems are matrix micro-cracking and

delamination. Analytical solutions are accomplished by using three-

dimensional numerical techniques. These solutions are very expensive to

construct and are often inaccurate in transition regions. Interlaminar

shear stresses and transverse normal stresses are thought to be the primary

causes of the aforementioned failures. Several theories have been proposed

recently to determine these stresses more accurately. The resulting

equations are cumbersome and the results are not fully satisfactory. For a

preliminary design analysis, an engineering theory that is simple yet

reliable would be a positive contribution.

An historical discussion of bending theory is presented to

establish the basis for new developments and to permit the present work to

be placed in proper perspective. Second, an analysis of bending behavior

.... ... i m~mdnbmmd d
m n
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is described which utilizes an exact solution from the theory of elasticity

for isotropic materials. A unique feature is the use of tracer constants

in order to track the contributions due to various physical effects

throughout the course of the analysis. With the aid of insight from this

analysis, a new engineering theory is proposed. The theory is applied to

elementary static applications for beam-type structures which illustrate

its use and permit comparisons with exact elasticity solutions to establish

its validity. It is extended to study the dynamic behavior of beams and

static buckling of columns.

The theory is applied to study the effects of the property

degradation due to hygrothermal conditioning on composite structural

behavior under static and dynamic loading situations.

The scope of this work is restricted to planar bending situations.

In its present form, the theory applies to beams with thin rectangular

cross sections which respond to planar bending in plane stress or to

infinitely wide plates which respond in plane strain (cylindrical

bending). Both isotropic and orthotropic materials are considered. Beams

of orthotropic material are the simplest type of structures where composite

material behavior can be studied.
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CHAPTER II

HISTORICAL SKETCH

Introductory Remarks

A brief history of the development of bending theory is given below.

Although the emphasis is on engineering-type bending theories, some

studies involving three-dimensional exact elasticity equations and higher

order beam and plate bending theories are included.

Classical Theories of Bending

The detailed historical development of the mathematical theory of

elasticity is given in the books by Love , Todhunter and Pearson2 , and
39

Sokolnikoff .  The classical theory of planar bending of beams is due to

Bernoulli and Euler. James Bernoulli derived the relationship between

bending moment and curvature in 1705. Euler assumed this relation in his

analysis of the elastica and vibration of thin rods . However, the full

engineering bending theory in its present form is due to Coulomb2 . Coulomb

clarified the equilibrium equations and introduced the notion of neutral4
axis. The theory is based on the hypothesis that plane sections normal to

the neutral axis remain plane and unextended after bending. It provides a

convenient approximation for slender beam and serves as a cornerstone for4

structural analysis and design.

The classical engineering theory of plate bending had its origin in

the pioneering work of Sophie Germain. She was awarded a prize in 1815 for

her attempt to provide a theoretical basis for the modal figures obtained

I . us= .. m.~ e l=l slm M I U ms l .. ...
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in Chladni's vibration experiments1 . Her work was finally published in

41821 It contained an error in the expression for strain energy of

2bending, which was corrected by Lagrange . The governing differential

equation for flexural vibration of plates was independently established by

Poiso 6  an 8acy
Navier , Poisson , and Cauchy7 . However, it was Kirchhoff8 who resolved

the famous controversy concerning the nature and number of proper boundary

conditions. Love 1 provided an extension for the bending of shells.

The Kirchhoff-Love theory of plate and shell bending is based on the

hypothesis that normals to the neutral surface remain normal and

unstretched after bending. This permits only two boundary conditions per

edge. Three boundary conditions per edge, however, provide a more

realistic behavioral description of the plate and shell bending.

Limitations of elementary bending theory become apparent in stu-

dying the propagation of elastic waves of short wavelengths. It was

pointed out by Lamb9 that Bernoulli-Euler theory is inadequate for impact

type loads. It leads to the physically absurd conclusion that disturbances

are propagated instantaneously throughout the beam. This is because it

predicts infinite phase velocity for harmonic waves as the wavelength

becomes shorter. According to the exact solution of Rayleigh 1, this

should approach a finite limit. Rayleigh attempted to improve the

classical beam bending theory by accounting for rotatory inertia effects

and obtained a finite limit.

Elasticity Solutions

The adequacy of a specific theory can best be decided by comparing
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it with exact solutions. Solutions of the full three-dimensional

elasticity equations are rare. Usually simple, closed form solutions do

not exist. Some can be found, however, for a few sufficiently simple

geometric configurations and for simple loadings. Normally, some

numerical technique is required to solve a practical problem.

Reference I gives some of the earliest solutions for beams bent

under arbitrarily continuous loading. Closed form solutions for beams of

arbitrary cross-section bent by terminal couples and loads are provided by

2 11 12Saint Venant . Pochhammer and Chree have studied independently wave

propagation in an infinitely long beam of solid circular cross-section. A

similar study for an infinitely wide rectangular plate was done by Lord

Rayleigh 1 0 . His solution for the flexural wave velocity of pt 3pagation in

an isotropic rectangular slab is a bench mark.

Von Karman13 and Seewald 14 undertook studies of the flexure of

rectangular beams. Their attempts to correlate elasticity solutions with

the classical beam bending theory yield corrections to the moment-

curvature relationship. It appears that Pearson was first to report these

corrections. Later, Grashof, Michell and FilonI also provided similar

corrections for beams subjected to distributed loading independently.

These are later attributed to shear deformation by several analysts.

Goodier 15 , however, in his three-dimensional order of magnitude analysis

of beam bending, showed that the correction term is not necessarily due

only to transverse shear stress effects. His analysis indicates that the

transverse normal stresses and an additional term in the expressio for

axial stress may also contribute to beam bending response. No means of

I



accounting for these effects is offered, however. It is rather perplexing

that later researchers have not followed up on Goodier's work or made an

effort account for the aforementioned effects. A recent exception is

Reference 36.

Using a different approach, Donnell16'1 7 obtained solutions like

those of References 13 and 14. Hashin proposed a simple direct method to

obtain compatible stress field in beams subjected to polynomial loading.

Later, he extended it to obtain exact stresses in plane orthotropic

beams19 . Rashin's approach differs from earlier work in that there is no

guess work involved in obtaining solutions. In the earlier work, the

solutions are guessed or found by combining known solutions so as to

satisfy boundary conditions. Though a direct method was first proposed by

Neou20 , the choice of the degree of polynomial remained arbitrary in his

study.

Recently Cheng21 has provided a plate theory based upon the three-

dimensional equations of elasticity. He did not consider any transverse

loading in the development.

Shear Deformation Theories

Attempts to remove the theoretical shortcomings in classical

bending theories gave rise to theories incorporating certain refinements.

During vibration, beam cross sections experience rotatory motions as well

as translations. Also, the transverse deflection of a beam has

contributions due to the transverse shearing forces as well as the bending

moment. Correction for the influence of rotatory inertia was provided by

Rayleigh 10 as mentioned earlier. Grashof22 (1878) and Rankine22 (1895)

included the effects of transverse shear deformation in analysing some

static beam bending problem.
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A more refined theory that accounts for rotatory inertia and

transverse shear deformation was proposed by Timoshenko in his famous

23
paper in 1921. Timoshenko's theory is -Adely recognized and used

wherever improvement on classical theory is sought. It is of some his-

torical interest that both the rotatory inertia correction and transverse

shear correction were given first by the French analyst M. Bresse in 1859

in his Cours de Mecanique Appliquee. This work has been overlooked in the

later development of the subject.

In Timoshenko's theory, there is a shear correction factor, k, to

account for nonuniform shear stresses across the cross-section of the beam.

Originally it was taken as the ratio of average to maximum shear stress on

the cross-section. Thus, for a rectangular cross-section, this procedure

yields a value of 2/3 for k. In a subsequent paper 24 , Timoshenko proposed

a new value, 8/9, for better correlation with the experimental results of

Filon

Most of the refined theories that followed are based upon Timo-

shenko-type beam equations. Uflyand 25 and Mindlin2 6 have developed plate

theories including the effects of rotatory inertia and transverse shear

deformation specifically for dynamic applications. Uflyand's 25 equations

are essentially an extension of Timoskenko's beam equations.

Mindlin's26 plate theory also contains the shear correction factor,

k. A unique way of obtaining k is not provided in the theory. It is chosen

by an ad-hoc criterion. He suggested two such criteria based on a matching

principle. One is to choose k such that the limiting phase velocity for

very short flexural waves is made identical with the velocity of Rayleigh's

surface waves. The other is to select k so that it gives exact circular

I- .. i -. m ~m -ii a N i ll l l l li
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frequency of the first antisymmetric mode of thickness-shear vibration.

The result is that k depends on the cross sectional shape and the mode of

motion. Values of k for various cross sectional shapes are provided in

Reference 27. References 28 and 29 treat the analysis of thickness shear

vibration in quartz crystals where Mindlin's shear deformation theory was

used. Traill-Nash, and Collar30 and Goodman and Sutherland 3 1 have provided

zznalogous theories for beam vibration. In the former, experimental

verification was also given.

Following the above mentioned work, there were several attempts to

improvise Mindlin-type equations. The differences primarily relate to the

selection of shear correction factor, k, according to various ad-hoc

criteria. A recent survey by Kaneko3 2 gives an excellent description of

them. Cowper 33 provided a new formula for k which depends upon Poisson's

ratio. His equations appeared to give satisfactory results for static

applications and long-wavelength, low frequency deformation of beams. In

the analysis, the effects of transverse normal stress were neglected.

Leibowitz and Kennard 34 have used an alternative approach to obtain k.

Exact bending moment-curvature relation of a beam bent under its own weight

was used to redefine k.

A shear deformation theory with two arbitrary constants is

presented in Reference 35. The underlying idea was further developed in

Reference 36 by combining the contributions of References 33, 34 and 35.

Two constants, k1 and k2, are introduced and chosen as follows. k1 is the

usual shear correction factor defined by a transverse shear stress-strain

relationship. k2 is associated with bending stiffness and comes from
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accounting for transverse normal and lateral stresses in the moment-

curvature relation. It is assumed that the stresses during beam vibration

can be approximated by those of a beam bent under uniform gravity loading.

36.
The above work of Stephen and Levinson is especially noteworthy.

It is the first work to make use of the observations and insights of

15
Goodier . Good agreement with exact solutions for several flexural wave

propagation problems has been demonstrated for overall response

properties. The theory requires an exact elasticity solution for St.

Venant's bending problem for the beam cross section under consideration for

its application, however. It also possesses a shortcoming. The

displacement variables are averaged quantities over the cross section.

Consequently, no claims are made regarding the pointwise distribution of

stresses or displacements.

For static applications, Reissner 3 7 has derived plate 4uftion'

that account for shear deformation and transverse normal stresses using an

entirely different approach in 1945. Consequently, his shear deformation

theory is marked by the presence of transverse normal stress effects.

He used assumed stresses and an energy principle to obtain the governing

differential equations. He clarified3 8 and subsequently improved his

earlier work for bending of plates without transverse normal stress 39

40
Several analogous theories for plates are surveyed in Panc's book . The

notable among them are due to Panc, Hencky and Kronm.

Refined Bending Theories

The classical bending theory and the shear deformation theories can

be considered to be related. The former can be obtained by taking the

shea- modulus in terms associated with the transverse shear deformation to

1i



11

be very large in the latter. In both theories, the displacement variables

contain only linear terms in the thickness coordinate, z. More refined

theories can be formulated by taking higher order terms in z in addition to

the linear terms. These theories are sometimes called higher order

theories.

The usual procedure for developing this type of theory has been a

displacement formulation. The displacements are assumed as a power series

in the thickness coordinate, z. The governing differential equations and

the appropriate boundary conditions are then obtained using energy

principles. References 41 and 42 formed the basis for subsequent works.

Whitney and Sun4 3 and Nelson and Lorch4 4 have proposed refined theories for

laminated plates and shell structures. A class of contact problems in

beams is solved in Reference 45. An excellent survey of various higher

order theories and a comparative study of relative differences is given in

Reference 46. Lo, Christensen and Wu4 6'4 7 have proposed recently a theory

for isotropic and laminated composite plates specifically for dealing with

problems which involve rapidly fluctuating loads with a characteristic

length of the order of thickness.

Displacement formulations of the above types begin with

kinematically admissible displacements, but the stress equilibrium

equations are violated. In Reference 48, a systematic approach to obtain

solutions of the three-dimensional elasticity equations is given for beams

subjected to arbitrary loading. It is generally true, however, that

assumed displacement approaches result in stresses which are not in

equilibrium and which provide poor design stress estimates. To obtain

stresses, alternative means may have to be sought as pointed out in

Reference 49.
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Reissner' 837,38,39 plate theory and the theory proposed in the

Reference 36 should also be classified as refined theories of bending.

This is because effects besides those due to transverse shear deformation

are accounted for.

Synopsis

Although engineering bending theory has a long and successful

history, there are issues that remain surrounded in uncertainty. Beyond

the classical theories, there are no unique or clearly superior refined or

shear deformation theories. A thorough exploration of the effects

15
4 enumerated by Goodier in addition to those of transverse shear has not

been undertaken. Are there relationships among the various theories that

have been proposed and are some "better" than others? Problems and

opportunities associated with composite structures require that these

issues be resolved.

...I..iii Nl iiillli nil
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CItP'TER III

PRELIMINARY ANALYS IS

Introductory Remarks

As a first, important step in an analysis of bending behavior, a

plane stress elasticity solution for a simply supported beam under uniform-

ly distributed loading is studied. It is possible to identify the in-

dividual contributions due to various factors affecting beau response. An

assessment of their relative importance, therefore, can be made.

Problem Definition and Solution

The two-dimensional elasticity solution for a simply supported beam

under uniformly distributed loading is given in the text by Timoshenko and

22Goodier . It is valid for very thin rectangular beams in the plane stress

form. For infinitely wide plates, the same solution remains valid if a

transformation of elastic constants for plane strain is employed.

The beam and coordinate system are shown in Figure 1. The length of

the beam is 29. and the depth is 2c. The width of the beam is taken as unity

for convenience. The beam is bent by a uniformly distributed load of

intensity q applied to its upper surface. The midapan of the beam

centroidal axis is chosen as the origin for the coordinate axes x and z. z

- +c and z - -c correspond to the bottom and top surfaces of the beam. The

notation and convention are shown.

For the stresses, the usual convention and notation are followed.

Accordingly, Oxx is the axial stress, ozz is the transverse normal stress

• •. .,,,.ill,-, ii., = Oaa iSi i I il i di i I- -I i -
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2c

4q

V I

~Z,W

Figure 1. Uniformly Loaded Simply Supported Beam and Coordinate System

I

-- I . d . - . m l e n m m l nm l i i ~ l g P ...



15

and (Y is the transverse shear stress. They are given by the following

expressions:

xx h(1 x2 )+ (2z 3 -2c 2z (1)

(r. z-3 2 +2c 3 (2)

qz

(c2 - 2)x (3)

I is the second moment of the cross sectional area and is 2c 3/3 for the

rectangular section under consideration. These stresses satisfy all the

governing differential equations and the stress boundary conditions on the

upper and lover surfaces. On the ends x - +, the stress boundary

conditions are satisfied in an overall Saint Venant sense.

As an aid in this analysis, three tracer constants, a , ot n and as,

are introduced. They are defined and used so as to facilitate keeping

track of three distinct contributions to the response. The first term of

Equation (1) corresponds to the bending stress giveu by classical

Bernoulli-Euler theory. The underlined term is a stress contribution which

will be called the "nonclassical axial stress". It produces no resultant

force or moment and is, therefore, a self equilibrating stress. a is thea

tracer constant associated with this contribution. If ci 1, this
a

contribution is fully accounted for. If c = 0 in the following, however,

it is ignored and the Bernoulli - Euler axial stress distribution is

recovered. For example, the axial stress is written using this convention
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in the form

= (12 )z + a aI 4 z- 4 c z) (1A)

an and as are defined analogously and are associated with contributions due

to G'zz and a xz, respectively.

The displacement components u and w are shown in Figure 1. Expres-

sions for them can be obtained by using Hooke's law and the strain dis-

placement relations. For plane stress, Hooke's law for an isotropic

material is

( V " )(4)
xx E xx zz

S(5)
zz E (O*zz-V Xx)

a-
y * z (6)

E is Young's modulus, %) is Poisson's ratio and G is the shear modulus. Cxx

and Ezz are the extensional strains in the longitudinal and the transverse

directions and Yxz is the shear strain. The strain-displacement relations

are

u Xw = "u + w =y

,X , z zz Z X Xz

With the aid of Equations (1) - (6) , u and w can be obtaiined by direct

integratior. of Equations (7). The following boundary conditions ,at the

ends x = +1, -A are imposed:

-4 - -m ,Rm l elmlm lm
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(.

w(t,O) = v(-,,O) = 0 (8)

They represent support conditions applied at the beam axis. Also, from the

symmetry requirement

u(O,z) = 0 (9)

These conditions are sufficient to prevent rigid body motion.

The expressions for u and v are

+ a n V(zj 3 c 2z + 2c3)x (10)

w(xz) w(xO) - 4 - c z + 2cZ)

+ U 2 _ x2) .2 Va (4 - -- -)1 (11)

In Equation (11), w(x,O) is the vertical deflection of the beam centroidal

axis due to bending. It is given by the Equation

,(x,o) =- - + [(l+v)a - (4 + .T.)] 2x2 (12'

[,2x2e x 4 2 2 ] (3

where i n 4, [1+ 12 c2[(+p) - O' a Ot n,!7 5j,'8"r (13)

r5
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8 is the deflection at the midspan of the beam.

An Analysis of Beam Response

The major differences between the classical Bernoulli-Euler theory

and the elasticity solution can be clearly identified in Equation (13).

The tnderlined term represents the correction to the former due to the

presence of contributions identified by the tracer constants aL , a and a.$ a n

Note that the contributions due to all three effects - transverse shear,

nonclassical axial stress and transverse normal strain - are of the same

order of magnitude. A static version of Timoshenko's theory 2 3 includes

only the terms associated with a1

The corrections shown in Equation (13) were known to earlier

authors13 '14.  However, they did not differentiate among the various

contributions. This differentiation provides the key ingredient for the

establishment of a rational engineering theory. Goodier 15 suspected that

the other influences beside transverse shear were important, but offered no

means of estimating them quantitatively and no concrete examples of their

contribution to beam response. The approach adopted here makes the matter

transparent and settles the issue for this example.

If V is taken to be 0.3 and L n -a = ca - 1 in Equation (13), then
n s a

6M 5h 1+ 2.28 (14)

A corresponding result from Timoshenko's original shear deformation

23• theory can be obtained by setting (1 = (1 O, and aI = 1 in Equation
n a a

Iq
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(13). For v = 0.3, the result is

6Timoshenko- f 3.2(5

4
A popular alternative is to use Timoshenko theory with as- This

5.

approximately corresponds to result obtained if Reissner's approach is

adopted. This leads to

4 2
+ 2.496 L- (15A)

Timoshenko - 24E1 21

Conclusions

On the basis of the foregoing analysis, the following conclusions

are reached:

1. A Timoshenko-type transverse shear theory does not contain the

necessary physical ingredients to treat problems with distributed

loadings.

2. Transverse shear, nonclassical axial stress and transverse

normal strain sake contributions to the response that are of the same order

of magnitude. A theory that is purported to be more accurate or complete

than classical theory must, therefore, correctly account for all of these

influences.
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CHAPTER IV

FOUNDATIONS OF A NEW THEORY

Objectives

The primary objective of this work is the development of a

foundation for an engineering bending theory which is consistent,

reliable, and simple to use. The theory should provide more reliable

information than existing ones. Furthermore, it must account for the three

effects that wre clearly identified previously --- transverse shear

strain, nonclassical axial stress and transverse normal strain.

An engineering theory is one in which assumptions or approximations

are introduced in order to simplify the governing equations or facilitate

their solution. Hopefully only a little accuracy is sacrificed for a

considerable reduction in computational labor. The intent is to encompass

the heart of the problem under consideration. Consistency and rationality

are desirable, but mathematical rigor is meaningless in this context. An

engineering theory is judged solely on the basis of the results obtained

from its use.

The standard of comparison for results that is used herein is

rigorous solution to the equations of elasticity theory for the problem in

question.

A second objective is to obtain stress estimates that are

improvements over those provided by classical bending theory. This must be

accomplished if the influence of nonclassical axial stress is to be
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properly accounted for.

Statically Equivalent Stresses

Equilibrium of a beam element is governed by overall equations

containing resultant axial force, shear force and bending moment. The sign

convention and notation for these appear in Figure 2. The equilibrium

equations are

N = 0 (16)

Q'x + q  0 (17)

M - Q 0 (18)

The force and moment resultants are defined in terms of stresses as

C

f dz (19)

Q f G'xz dz (20)

-c

C

( (21)
14 f J xx z dz

-c

In the above, a rectangular cross section of unit width is assumed as

before. In addition, the beam is assumed to be of uniform depth.

According to classical theory, the stresses are

.. . .........-I. , ,,.. ~ ~ m .. -. i ' ' ' I -
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xx T (22)

xz (c2 2 ) (23)

Q x 3 2
zz ~ ~ Z~

A is the cross sectional area, which is 2c for the rectangular cross

section under consideration. These stresses are statically equivalent to

the applied loads and satisfy the stress equations of equilibrium:

0 + a = 0 (25)

0z' + aX7 x 0 (26)OZZZ XZX (6

In addition, Equations (19)-(21) are satisfied, as are appropriate

stress conditions at z = c and z - -c.

The above stresses, although not exact, serve as a first approxi-

mation. This stress field is statically equivalent to applied loads,

however, it does not satisfy compatibility requirements. It will be used

subsequently to develop approximations for the displacement components.

Kinematics

Classical Bernoulli-Euler theory is based upon a kinematic as-

sumption that is equivalent to ignoring, and hence setting to zero,

transverse normal strain and transverse shear strain. Timoshenko-type

shear deformat;on theories account for transverse shear strain but still do

not permit transverse normal strain. On the basis of the previous analysis
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of the simply supported beam example, it appears necessary to completely

abandon the Bernoulli-Euler kinematic assumption. In order to obtain some

simplification from the complete elasticity equations, an assumption that

facilitates the analysis is required, however.

The central assumption that replaces the Bernoulli-Euler hypothesis

in the present development is that the statically equivalent stresses in

Equations (22)-(24) can be used to estimate the transverse normal strain

and transverse shear strain. Note that this is an assumption regarding

stresses. It is not a kinematic assumption. This is in sharp contrast to

classical and Timoshenko-type shear deformation theories.

The development will be carried out for orthotropic materials with

principal material directions corresponding to axes of the beam. The

appropriate form of Hooke's Law for plane stress (beams of thin rectangular

cross section) is

xx 1 xx - V3 zz (27)

Uzz V13 axx 
(28)zz = 233 11

/xz =a xz/G13 (29)

,xx' , and c are the axial strain, transverse normal strain and

transverse shear strain, respectively. E and E33 are elastic moduli

associated with the x and z directions. V 13 is Poisson's ratio and G1 3 is

the transverse shear modulus.



Although it is impossible to obtain a unique displacement field from

the incompatible stress field, a selective use of strain displacement

relations and Hooke's Law permits an approximate form for the displacement

field to be determined. The error involved in this process will be

estimated in Chapter VII.

On the basis of the above, Equations (7), (22), (24) and (28) permit

qthe transverse normal strain to be approximated as

" 13 N + (z3  2 2 3 (30)

Integration of this equation results in the following expression for the

lateral displacement component, v:

W(x) V13 (Nz + -2

T, 1 r -r
+ c, z 2 c3) (31)

33 T!~.-y S c z)

W(x) is the lateral deflection of the beam axis (z 0), which is an unknown

* function to be determined.

The axial component of displacement u can be estimated as follows.

Equations (7), (16), (18), (23), (29), and (31) permit u z to be expressed

* in terms of the shear stress and w.

u a /G 1
,z xzl134lZ Z
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= (c2-22 - W
2G131 'x

V13 2_Q'xx 4 C2 2 2 3
V1 * 32  "T-- z 2  c3 z)

2E. 2 TT + !T-
33

This expression is integrated to yield

V 3
13 z3

u U(x)-zW + 73

+ 3 (c 2  z3,xx (z5  c2z 3  32)+ GQ- c2z -R- - I 0 - =r +  'S c z(32)

U(x) is the axial deflection of the beam axis, which is an unknown f;inction

to be determined.

The static displacement field is completely described by Equations

(31) and (32). U and W, the axis displacement components, emerge as

natural kinematic variables. If V 13+0 and E 33- in (31) and (32), a

trativerse shear theory is obtained which includes the effects of cross

section warping. If, in addition, G1 3 -0, then the classical Bernoulli-

Euler kinematic assumption is recovered.

Considerable simplification is achieved if the underlined terms in

Equations (31) and (32) are neglected. These terms are associated with

higher derivatives of the shear force Q than the remaining terms. This

simplification is adopted here. Its full implication will be discussed in

Chapter VII. The accuracy of this approximation is related to how rapidly

the applied load q varies with x.
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Refined Axial Stress Distribution

The axial stress ( is the largest and most important stress

xx

component. An accurate knowledge of it is often all that is needed in a

practical application. A refined estimate which improves Equation (22) is

central, therefore, to the improvements that are sought.

Equations (7), (24), (27) and (32) can be utilized to prcuce a

refined axial stress expression.

aY E u +~ V C
xx 11 ,x 13 zz

= - + V13 z3

1x z3x 'X Q x

+ Q (c2 - + xZ 3 _ c 2z + 2 c 3)
TGTI TIr 13-ITf (33

In the above, contributions due to the underlined terms in Equation (32)

are not included. Notice that the stress 4istribution throughout the

thickness is not linear as in the classical approximation (22).

Relationships for the axial force and bending moment are obtained by

using Equations (19), (21) and (33). The results are

3

M E + 13c

MnE1 W + ( k *+-13c2 Q(35)
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The parameter kx is (E1 1 /2G 1 3 - 13); it is unity for an isotropic ma-

terial. Equations (34) and (35) permit (33) to be rewritten as

QN Mz + x 3 2 3N
xx A + T" + r kX ( c z - z ) (33A)

The underlined term is the nonclassical axial stream contribution, wnici, is

che desired refinement.

Suammary

The governing equations for the new theory can be swuarized now.

They encompass four categories. Overall beam-type equations consist of the

equilibrium equations (16)-(18) and the constitutive equations (34) and

(35). In addition, two sets of equations provide the distributions of

stresses and displacements throughout the structure. The first set for

stresses consists of Equations (33A), (23) and (24). The second for

displacements is composed of Equations (31) and (32) with the underlined

terms omitted.

The above collection of equations requires the specification of

boundary conditions. The classical boundary condition options are to

specify N or U, Q or W, and M or * at the ends of the beam. is a rotation-

related variable.

Three commonly used rotation-related variables are considered

below. The first is the rotation of the cross section at the beam,

2
(X,) C - W (36)

= ,o C131 )X
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Another is the rotation-related variable, *2' which is defined by

the following equation:

c

* =! fuz dz

-c
!V

-W + 3 13 4 )

11 13

q This variable naturally arises in Reissner's development of plate bending

38
theory based upon the complementary energy principle.

The third is the mean rotation of the cross section, 3"

c

u, (1 - r4L [UX- (38)

3 3f z

=C 2 ( I +VI3 W(8

In a Timoshenko-type theory, since u is linear in z, all of the

above definitions are equivalent. Equation (36) is the actual definition
23

used in the original paper. These variables permit different models for

simulating clamped end conditions to be defined.

Discussion

The development of the equations requires no ad hoc kinematic

assumptions or use of a variational principle. The central assumption is

that the transverse normal and shear strain components can be estimated

from classical stresses. A selective use of strain displacement relations
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is utilized to establish the approximate form of the displacements. The

equations have the following properties:

1. Stress and displacement distributions throughout the structure

are found in terms of the response variables associated with

the axis;

2. Nonclassical axial stress and cross section warping effects,

transverse shear strain and transverse normal strain are all

accounted for in a rational manner;

3. The equations can be shown to yield exact results for the case

of uniformly distributed lateral loading;

4. For nonuniform loading, some of the equations are approximate

-- the stresses are not exactly in equilibrium and the stresses

and displacements are not exactly compatible; and

5. The equations are as simple to apply as static Timoshenko-type

shear deformation theories.

Items 1-3 and 5 are strong points in favor of the new equations. Item 4

imposes some limitations on the validity of the theory, which will be

thoroughly discussed in Chapter VII, but it is responsible for the

simplicity that is achieved. The level of stress approximation which
14

results is analogous to that suggested by Seewald for isotropic

materials.

Tn the process of solving a particular bending problem, the only

I "".aasl i li mnslm ---
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apparent difference from application of a static Timoshenko-type shear

deformation theory is the value for the coefficient of the Q x- term in

Equation (35). As the applications will demonstrate, this seemingly minor

difference, together with the use of Equations (31), (32) and (33A),

produces significantly improved results.
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CHAPTER V

STATIC APPLICATIONS

Introductory Remarks

In order to illustrate the benefits of the new theory, several

elementary applications for uniform beams subjected to uniformly

distributed loading applied to the upper surface- analogous to the

situation shown in Figure 1, will be presented. One special case of a

linearly varying load is studied to illustrate a particular point.

Comparisons are made with the exact elasticity solution, classical

Bernoulli-Euler theory and the original Timoshenko theory 2 3 in each case.

The two dimensional elasticity solution, for the present purposes, is

considered an exact solution, although the plane stress approximation

requires the width to depth ratio of the beam to be small. A discussion of

this issue is given in Reference 23, page 274.

Solutions are derived for orthotropic beams, and corresponding

results for isotropic beams are obtained by specialization. Poisson's

ratio is taken to be 0.3 throughout. For orthotropic beams, Eit/G 1 3 is

taken to be 30; this is a typical value for a modern graphite/epoxy

composite material.

In presenting results, appropriate response variables are non-

dimensionalized with respect to the corresponding values obtained from

-4 - - -•-- . -m m .m m m m m m m..
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Bernoulli-Euler theory. This practice permits easy recognition ofI
departures from classical theory predictions.

Response can be separated into bending and stretching. Stretching

is governed by Equations (16) and (34), bending by Equations (17), (18),

and (35). The bending problem involving H, Q and W must be solved first. N

and U, stretching variables, are determined secondarily. For the present

purposes, only the bending portion of the response is discussed.

Simply Supported Beam

The exact solution for a simply supported (SS) isotropic beam was

presented earlier. The precise boundary conditions that have been imposed

at the ends are

SS: M = 0, W 0 (39)

Such a beam is shown in Figure 1. It is a statically determinate struc-

ture, so the moment and shear distributions are known.

The response of the beam is defined if the axis lateral deflection

W(x) is found. For this type of end restraint, W can be expressed as

4

W 4 E q 2 X - x 4 + 9 x 2 ( 4 0 A )

In the above, the constant K is

I El k

1 1 1 (41)OL

2 = _3 n 13 a 5 (41)

The tracer constants introduced earlier are utilized to identify the origin

of the various contributions to K. 6 is the maximum or midapan deflection,
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which is

24E 11I 
+ -K( 

2

L - 2 is the total length of the beam and H = 2c is the depth of the cross

section. The stress distribution at midspan is given by

= 81, 1 +,. 4kx L23H2 0) (40B)

The solution by the present theory correspond to aa = a = a I ina n s

(41); it is exact for this problem. If K is set to zero in Equations (40)

and (42), then the Bernoulli-Euler result is obtained. If a = a = 0 anda n

a I in (41), the static Timoshenko theory prediction is recovered. NoteS

sthat Timoshenko theory overestimates the midspan deflection in this case.

Cantilever Beam

For a cantilever beam, it is convenient to take the origin of

coordinates, x - 0, at the free end. x - L, corresponds to the clamped end.

Unlike the more elementary theories, the present theory does not suggest a

unique, simple model for a clamped or fixed end. Three rotation variables

were introduced earlier in Equations (36)-(38). Three definitions of

clamping, therefore, will be discussed.

All results can be cast in a common format. The three types of

clamping are denoted Cl, C2, and C3. They correspond to the following

definitions:
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Cl: W = 0, = 0 (43)

C2: W = 0, =0 (44)
'2

C3: W = 0, 03 0 (45)

The cantilever beam is staticaLLy aeterULnate with M and Q vanishing at the

free end. At the fixed end, one of the above definitions of clamping must

be imposed. The rotation variables can be expressed in the com-on form

. K. -Qc2  W 1, 2, 3. (46)
1 I E11 1 ,x

The constants K -K3 are

K s 11 (47)
1 G 1[LEll (a 2 (EI3

= 3s G 53  G 13)] (48)

F1 [ El (a (Ell
K =1a 1 Jj(49)= 3 =2 s G3 3 GI 3 )

3 2L5 1 3 3G 1 3 -

Since the structure is statically determinate, the axial stress

distribution can be readily obtained by appropriate substitution for N, M

and Q in Equation (33A). The result for the fixed end is

Gx " I + kx .12 2 O (L 2) (33B)
-x 21 ~ a 3 xL 2 2O H 2

The lateral deflection can be conveniently expressed as follows.
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W.A r -+ (KL - K)c2 L)x

=i E E1 1 I 6 (K1 2

RH2  2 xl (o
+- - i 1 4, 2, 3. (50)

The constants 6. (i = 1, 2, 3) are the beam tip deflections; they are found

from

i L8E4 ( + (!i] ; , , 2, 3. (51)

The constant K is defined in Equation (41).

The present solutions correspond to setting all the tracer

constants to unity; they are exact for the end conditions imposed. The

designation Cl, C2 and C3 has been chosen to correspond to the order of

increasing stiffness of the end restraint. The coefficients of (H/L) 2 for

Cl, C2 and C3 are 18.08, 12.15 and 8.19, respectively, for the orthotropic

material chosen.

If Ki and K are set to zero in the above equations, the Bernoulli-

Euler results are obtained. This approximation, of course, overestimates

stiffness. The Timoshenko theory result is obtained from the C1 case by

setting S s = 1 anda a n = 0 in Equations (41) and (47). The coefficient

of (H/L)2 is 15 for the same material considered earlier. It is

interesting to note that Timoshenko theory underestimates maximum

deflection in this case.

Bernoulli-Euler theory tends to always overestimate stiffness.

Timoshenko theory, however, in light of the results presented here, may

either provide an overestimate or underestimate of the maximum deflection,

4. ,.,.. i i m m / i md m ||i
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depending upon the problem under consideration. It is therefore, "unre-

liable" in this sense.

A related problem is a cantilever beam subjected to a linearly

varying distributed load that varies from zero at the free end to q at the

fixed end. The exact solution is given in Reference 22. For an isotropic

beam ith Cl restraint at the fixed end, the tip deflection is

ffi 1 1 +2H 2a + 5n + 5a ( +P

01a + H )4 (52)

If the present theory is used, the underlined term is not obtained. For

L/H >2, this term is negligible. For practical purposes, therefore, the

present theory results are indistinguishable from the exact ones.

Clamped Beam

*Unlike the previous examples, the clamped beam is statically

indeterminate. Three solutions were found corresponding to the three

definitions of clamping given in Equations (43)-(45). They may be

expressed in a common form. It is convenient to place the origin of

coordinates at midapan and use the semi-length 9. The bending moment

distribution is

M A (12 - x2 ) - M (53)

M° is the end fixing moment, which is positive if it tends to reduce the end

rotation due to the uniform load.

I.



38

The expression for the lateral axis deflection is

W I [ 5 4 2x2 + 4 )

E I 1 1 +4 6

+ 2_ X2 2)] (54A)
8

The redundant end fixing moment is different for each type of clamping. It

can be written in the common form

Mo _i~ r + 3Hj)2 (K i = ,2 .(55)122 L1 ~~ KK) ,2

The axial stress distribution is also different for each type of clamping.

2 ( 2 2 2/4A2 3\
aL , z H H z5B

xx 41 6 22 i L 2 x L 2 H 254

As before, L is the total beam length and KI-K 3 are defined in Equations

(47)-(49). The occurrence of different end moment values is due to the

statically indeterminate nature of the structure. The present theory

yields the exact solutions to this problem for each form of clamping.

An end moment ratio as a function of beam slenderness is plotted in

Figures 3 and 4 for isotropic and orthotropic materials, respectively.The

subscript "B-E" refers to the value from Bernoulli-Euler theory.

Bernoulli-Euler and Timoshenko theories give identical predictions. The

present theory, however, which is exact, predicts fundamentally different

behavior that differs for each type of clamping. Departures from classical
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theory are much greater for beams made of the typical orthotropic material.

An interesting phenomenon occurs for Ci restraint of orthotropic

beams. The end fixing moment acutally reverses sign for relatively deep

beams. This intriguing situation is explained by the fact that the end

rotation is forced to zero by a combination of shear force and bending

moment. By virtue of symetry of loading and structure, the end shear

force is fixed by vertical force equilibrium consideraLions alone.

Consequently, only the end moment is available for controlling rotation.

Since the transverse shear stiffness to extensional stiffness ratio is

quite low for this material, a reversal of moment is required to offset the

large shear strain at the axis for shorter Cl-supported beams. A

countertrend for C3-supported beams reflects the increased relative

difficulty of achieving this rigid type of fixity as shorter beams are

considered.

Propped Cantilever Beam

Let the origin of coordinates be the simply supported end of a

propped cantilever beam and x - L be the clamped end. Three cases

corresponding to the three types of clamping have been considered. The

bending moment is

2 (56)

~M Q x -q E

Qo is the shear force (reaction) at the propped end x - 0. It can be

expressed in conon form as follows for each type of clamping.
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L r2 + Ki 2
Qo" S i I+ 2 (K. - +- - ); i-,,2,3. (57)

L L 2 Ji 2 L2

The lateral axis deflection and the axial stress distribution are given by

S( 2  2 ) ( 3  3 K2W 1  -l 24 -_ xxH qx(L x) 8
EI (11 62 58)

rI x) + .1H!2 1K

S8 T 8L(56A)

34 -2

3
+ k q (4 Lz 3 -S

x H3 5 R

End moment ratio plots appear in Figures 5 and 6 for isotropic and

orthotropic beams, respectively, for this indeterminate structural

system, Bernoulli-Euler and Timoshenko theories predict different

behavioral trends. The present theory predictions are again exact for this

problem, as will be the case always for uniformly distributed loadings.

Cl-supported orthotropic beams again exhibit a reversal of sign of

the end fixing moment similar to the clamped case. Timoshenko theory,

which approximates this end fixity condition, displays a similar trend, but

does not predict an actual reversal for values of slenderness parameter

shown.

Concluding Remarks

Several representative static applications whi,-h illustrate the use

.. . . . . -,,,=,4 m mbm du m m•Bl
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of the new equations have been studied. The additional effects are seen to

be more pronounced for statically indeterminate and orthotropic

structures. Furthermore, the three elementary clamping model solutions

indicate that care must be devoted to matching mathematical descriptions of

boundary restraint with practical end restraint achieved in tests or

structural assemblies. The sensitivity of the response to boundary

restraint modeling is substantial for orthotropic structures.
CConsequently, the next chapter is devoted to a study of this issue.

4

4

4 - m~ m m n N i I a a ..
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CIAPTER VI

AN APPROACH TO ACHIEVE IDEAL CLAMPING

Pre liminary Remarks

The static response of a clamped beam under uniformly distributed

loading is extremely sensitive to the precise definition of the boundary

conditions. This sensitivity is more pronounced if the beam is

orthotropic. None of the three elementary models for the clamped end

satisfy exactly the generally accepted definition of zero displacement at

the fixed end. This fact is illustrated in Figure 7. It shows clamped end

cross section warping for a typical orthotropic beam with L/H = 4. In this

Chapter, an approach to eliminate the warping at the ends, thereby

achieving ideal clamping, is described.

Analysis

The analysis is based on the principle of superposition. The first

part of the solution is taken to be one of the elementary clamping models.

To this solution a second solution for the beam bent by prescribed end

displacements is added. The boundary displacements are chosen such that

they nullify the warping due to the elementary clamping model. Any of the

three elementary models may be chosen as the starting point. However, for

the purpose of illustration, the Cl clamping model solution is taken here

as a starting point. Accordii. to this solution, the clamped end axial

displacement components are

Qoz  E 11

uI E 11 (3 G 3

-- - ----- -, =m,= -- mmUl aml l, U il llll1I1II13.
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2
W, W~x 

13Mo
z 2

wI in(x =+t)- V
2E 11 (59)

The second part is a solution to the following boundary value problem:

u + u I = 0 at x = + 1 (60)

w + w = = 0 at x =i+
m1

u and w are prescribed boundary displacements.

0 = =0 on z - + c for all x (61)

The addition of the two solutions leads to a refined clamping model which

will be referred as C4.

ThiL boundary value problem is solved with the aid of the principle

of virtual complementary work. This principle is appropriate for problems

with prescribed displacement boundary conditions. The statement is

£ c {%,xdxdz
f f xx6x + Czz6O + yZ 6o dd

-c

u dz - - dz 0 (62)

-c -c -t

The principle requires stresses which satisfy the equilibrium equations
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and stress boundary conditions. The following stress field is selected.

3 32
C6 Bz + f2(x) (z - - c z) (63)

f2 (6c2z2  c 4  5z4)Oxz =20- -

22,xx 2 2)2
0zz 20

B is an arbitrary constant and f 2(x) is an arbitrary function to be

determined by application of the principle. The distribution of U hasXX

been selected based on the physical nature of the problem.'1xz and a arexz zz

then obtained by using the equilibrium equations (25) and (26) and the

boundary conditions given in Equations (61). The use of assumed solutions

50
employing free functions is due to Kantorovich

Substitution of Equations (59) and (63) into (62) leads to the

following functional:

f 3cZ) V3zz 2 ( - )

~ cj~H ~ (E -E 20 c }6B +(z 5 f21

ff, (2 c 2 v
1  f 3 -3c 2z4J f z( z2 c 2)21L~0E 3 Bz( 20 - -0

20E 3 E 1 E 1

-- - - - -
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+ 1f z2 , (6c 2 E2 _ c4 _ 5 Z4 lf 2 ' x ( 6 c 2 z2  c c4-5z 4)}I

L20G1 3  
20

- __ 3f z6B + (z 3  3 c2 Z6f dz

6Ei I G 1 3  2cf I
-c 1 13

c 9f V1 3 M 0  ~ (6c2 z2 - c4- 5z )  dz = 0 (62A)

2 20-.

Simplification and rearrangement of the terms of Equation (62A) results in

8c f2  32c9k 
16c I I

f 866256 d175" "E' 1 7875 2,xx 86625 E3 3  2,xxx 2

2=3B 16c 7E13 2Ell) o c51 9,

3E 2100 2,x 5 13 G 13 6E I1

16 c 16 13 c B 16v 13 f 2 c 9  4v 1 M o c 7]

f + - - - -- 6
81625 16 13 13213L 865E 33  2,xx -2100 E 11 7875 525 E itI 2,x

9 16

f6LI f + __,a[86625 E33 f2,xxx 7875 2,x 7875 G13

8c7  %o ( E11 )I 0 (64

175 6E I  (v1 3 -G6f 2 _ (64)
H" 13 -3.



The above functional yields the Euler equations

i c4 f - 22 k c 2 f990
2,xxxx X 2,xx 4 f2 i

= 0 (65)

2 Q E " 14

B +3 o~ 1S1 2 13 - (66)5t 61 13 G1 3  175 Z 2,x

where lais the ratio E1 1 /E33.

The natural boundary conditions are

if C 2 165 B 165 V1 3 H
2,xx 43 + l'v1f o = 0 (67)

c 4 Ic 2

lit E)1  G 
2  990 ( E (68)

13 13 2 ,x- -( 13-- G13 61

Equations (65)-(68) have precise physical significance. The Euler

Equations are the relations to be satisfied for the kinematic compatibility

of the strains. Equations (67)-(68) are displacement type boundary

conditions. The first represents transverse shear strain. The second

represents axial strain.

The solution to Equation (65) may be chosen as e , hich yields

the following characteristic equation
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i2

c442 2 990
4 m4 22k () m + 94 = 0 (65A)x 4

Consequently

m2 22kg x ;J E k 90 ,2 (6B
'U2 - 2ia(6

The roots are real, equal or complex depending on whether

k2 / > 2.045, = 2.045, < 2.045

In terms of elastic constants the above is

2G13 V /(E1 i/E33 ) > 2.045, = 2.045, < 2.045

For an orthotropic material with properties E 1 /G1 3  30,
S/E33 15 and v = 0.3, k2 /p 14.406. Consequently, the roots are

1E 33 =1 n 13

real and the most general form of solution to Equation (65) may be written

as

mix m2x mix m 2x
f = C cosh - + D cosh -?- + C' sinh -- + D' sinh -2 Z. it Z

Since a is symmetric with respect to x, the above reduces toxx

1mx m2x
f2 C cosh + D cosh T (69)

i
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a1 and m2 are to be obtained from

21"2 2 c

(70)

For an isotropic material k 2/=l. The roots are
x

(+ 3.656 4 + 1.528 -). The solution form is, therefore selected as

Ui X ax alx m2 xf = C cosh coo + D sinh 1 (71)

2
where a I and m 2 are given by

m 3.656-c
c

a 1.538-1 (70A)
2  3c

It is interesting to note that for isotropic materials, the solution

is independent of the material constants E, G and V. Also, there exists a

possibility of complex and equal roots for orthotropic materials as

indicated by Equation (65B). However, this situation is not usually

encountered in practical situations. The practical ranges for the

parameters kx and Ii are 20-50 and 10-25, respectively.

Results and Discussion

The axial stress distribution in C4 restraint beam is

.2 [(f? - x2) M]. . kxq .3 3 2OxxC4 2 0 1 31 (z- cz
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332

2Bz + f2 (z  c z) (71)

M 0 is the end moment due to Cl clamping. From Equation (55) it may be

written as

o= 1 13  )(
01 3X2 2 TJ

Equations (71), (72) and (66) can be combined to cast G into thexxC4

following convenient form:

=- x + [ V 13 .- 2, z + f2 (z 2Z) - c-E
B-E B-E I /

(77"

j B-E is the maximum axial stress at the center according to Bernoulli-Euler

theory and axxC2 is the axial stress distribution in C2 restraint beam.

They are given by

i2

- g q 2c (74)
0B-E - 61

xx2L23 -_ q13 2 )]+ - (z3- I c z)

(75)
The underlined term in Equation (73) represents a correction to be added to

C2 stress distribution. This will be referred as local disturbance

parameter in the subsequent text.

. . . ........... I- - - m m . l i m i l m I ...
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It is possible to show, for large values of L/H, that f2 can be

represented approximately by

e-sic -MF

f2 
= C L/He DL/H e (76)

and D are constants and Z is the dimensionless distance measured from the

end.

x- (76A)

Equations (73) and (76) allow the following to be written

4 LE 2c3
LI 12e " + . 2e "'2175 Z3 c I&

e[- l " 2 fz~ 3 z

+ 6-JZe + De j() 3 - ( E) (77)c 5 c5

LDP refers to the local disturbance parameter.

An important conclusion can be reached by observation of the

Equation (77). The local disturbance decays exponentially from the ends;

for relatively slender beams, therefore, the solution due to C4 approaches

C2 results in the interior zone. This decay phenomenon is well understood

and is usually termed as an end effect or boundary layer effect 5 1. The

maximum value of the local disturbance parameter is shown graphically in

Figure 8 for several length-to-depth ratios. Results are obtained from the

complete expression (69). Another point of interest is the maximum axial

stress at the edges and the influence of the orthotropicity on it. Figure
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9 provides this comparison. In the calculations, the ratio EIt/E 33 is

( taken to be equal to E1 1 /2G1 3 and E1 1/G1 3 is varied between 10 to 50.

The isotropic value is also shown for comparison.

The presence of a boundary zone near ends limits validity of the

elementary theory to the interior zone. The lower of the two exponents M1

and m2 primarily governs the extent of the boundary zone. An approximate

estimate of a decay length, or the dimension of the boundary zone, can be
-3

obtained by equating the corresponding term to e , which is approximately

0.05 in value. The lower of the two roots m 1 , is given by

(22kx - 484Tx2 - 990 1( ) (78)

for orthotropic materials. The calculation of decay length is illustrated

below.

22k 484k 2 _ 99! ,
fX -F4 d - 91)x2 f d .79)

xd is decay length and is obtained as 1.682 H. For isotropic materials, an

approach similar to the above is followed starting from Equation (72). xd

is obtained as 0.410 H. It is independent of material constants.

Equation (79) indicates a strong dependence of the decay length on

the material properties. The decay length defines limits for application

of a decay type solution of the form given in Equation (76). A minimum of

two decay lengths is required for the beam to be considered long so that

corrections of the type in Equation (77) are applicable. Beams with

-I~ lii ii li - ia



58

5

4

01

CC

uJi 2

BERNOULLI-EULER

1

0 3

10 20 30 40 50
Ell /G 13

I' ~a .* 9. u ~~ wur Ei)go- Ax iO i Irvm: Raio it a I CI .mptd "t-am



59

lengths less than 2xd must be considered short and a full solution of the

type in Equation (71) should be used in the computations of refined

clamping model solution.

An estimate of the clamped end warping :, splacement may be obtained

by integration of the constitutive relation

C xx N13
u W - - -C.x El1l E 33 zz

a is nondimensionalized with respect to maximum deflection at the center

according to Bernoulli-Euler theory for convenience and is expressed as

_uC2 48 H 2 4 4 H 2  3iiw-17 L L ( ) V, z , --  z

max B-E max B-E L 2-7 '13 + 2 - *15L H

4T) 13'T H 4  z
' , n h-h M .I, - . .1 - . , . I rkh I L

(8Is

uC2 is the axial displacement at the clamped end due to C2 restraint.

" C2 48 - z .

IIJw - K +W max B-E K2) H 3 G 1 13H 31

Wmax B-E is the maximum deflection at the center according to Bernoulli-

Euler theory and is given by

W qL 4
max B-E 384E 1 (83)
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The clamped end transverse displacement w is of secondary

importance for the present study. It is usually Poisson's effect and

therefore much smaller. It may be obtained, in a similar manner, by

integrating

°zz _ 13,z E3 E xx

E33 E11 x

The result is

H2 .z2 H2 (v 3 k
W z) 16 z 3+

96 z 2 H 6
T a 7- V 13 2  L6 . 1 + 

2

H4 (_ 4  2

S-384 V3 L . 3 z0 -2)(C cosh m I + 0 cosh m 2

13 4 4H 130 212

S 6  4  2
+ - c + (Cm2 cosh m + Dm2 cosh m

5 .E 6 6 42 2 2
5 33 L 6H 8H4 32H 2  2

(85)

The clamped end displacement components are shown in Table 1. It

... ....4-- * ,- w ~, m mu m l dggmiiim a h ..
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can be concluded that the approach adopted in the present study provides a

simple, reliable model for ideal clamping.

Since the stresses do not satisfy compatibility relations exactly,

the above approach is not a unique way of determining the displacement

components. It is, however, rational and the most direct.

Concluding Remarks

IOn the basis of the results presented above the following

conclusions are reached.

1. A way of determining the boundary zone stresses is presented

which indicates that the interior solution is best represented by C2 model.

2. It is demonstrated with confirmatory results that C4 model

clamping is extremely good.

3. An estimate of end zone correction for long beams is provided

through LDP. The region of local effects is quantified with the aid of the

decay length; it is shown to be a strong function of material properties.

.

........... .Ih.,,r ,,, k -- ,- d m +.,,,/ -.- .. M - l- II II
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Table 1. Clamped End Displacements for an Orthotropic Beam with
E11 /G 13 m 30 and L/H = 4

z/I ulWma - w/W

z/H Umax B-E max B-E

r-C2 C4 C2 C4

I
- 0.5 - .7425 - 0.0018 .0315 0.0230

- 0.4 - .0594 0.0013 .0202 - 0.0212
I

- 0.3 - .2673 0.0006 0.0114 - 0.0293

- 0.2 * -. 3267 - 0.0004 0.0050 - 0.0190

- 0.1 - .2079 - 0.0006 0.0013 - 0.0057

- 0.0 - .0000 0.0000 .0000 0.0000

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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CHAPTER VII

VALIDATION OF THE THEORY

Preliminary Remarks

It is demonstrated in Chapter V that the new equations yield

exact results or results that are indistinguishable from exact for the

static examples considered. The loading is uniform in all but one case. A

linearly varying load is considered in the exceptional case. The validity

e of the theory for arbitrarily varying load remains to be established. This

is accomplished by completing the following three tasks:

(1). A thorough analysis to determine error estimates for the

equations is presented.

(2). Reissner plate equations, specialized for planar bending, are

demonstrated to be obtainable from the present equations.

(3). A quantitative demonstration for a classic benchmark problem

is provided.

The benchmark problem is the response of a simply supported beam tc

4 a sinusoidally distributed loading. Exact solutions for this problem

appear in References 52 and 53, which facilitate a critical comparison.

This is a generic problem which has been used as a test case by others.

Predictions of the present theory are compared with the exact solutions

using an approach which yields the range of validity of the theory as a

function of beam length-to-depth ratio. Consequently, a diceci. indication

of the applicability of the theory in this nonuniform loading situation is

obtained for specific geometrical and stiffness characteristics.

-- I, , ,, -.. rd i l mldi O~aldIi lm t a l p a a....
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A Consistency Analysis

Analytical Approach

The stresses given by the present theory are approximate for

nonuniformly distributed loadings. It is desirable for the errors in the

equations of equilibrium, compatibility equations and displacements to be

consistent with the level of approximation of the stresses. To study this

issue, a systematic order of magnitude analysis has been undertaken. The

approach adopted and the underlying philosophy of the arguments presented

are similar to those employed by Koiter 54' 55 in conjunction with a

critical study of shell theory equations.

The magnitudes of spatial derivatives are estimated in the

following way: a wavelength for the deformation is defined such that

* is the maximum absolute value of the quantity 0 in the region under
M

consideration. X is associated with the wavelength of load variation and

the wavelength of deformation. Derivatives with respect to z are dealt with

in a similar way.

This implies that the smallest wavelengLh of deformation to be considered

in the z direction is of O(H).
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C . Let L be the measure of beam length. For applications of interest

here, L = OM() and H/X is small.

In bending, a is the largest stress and is chosen as a convenientxx

reference. Let a be its maximum value. With the aid of Equations (22),

(16)-(18), the following estimates are obtained:

SIMHI- 0(o H2) (87)

IQ I - o(V H 2/A (88)

H" 0 (89)
H2

Equations (23), (24) and (88) permit the estimation of a7 andO

IaxI O(a /X) (90)

Iyzz o( a 21) (91)

The nonclassical axial stress is represented by the underlined term in

(33A). From the result (88), this may be estimated as

a xxNC" O(kx H2 2 ) (92)

The subscript "NC" refers to the nonclassical part of the stress.

• Error Estimates for the Equilibrium Equations

In the classical theory, the stress equilibrium equations are

satisfied identically. Due to the nonclassical bending atress in the

* present theory, stress equilibrium is not satisfied exactly for nonuniform

loading. In order to facilitate the argument that follows, the stresses

6
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a0 and G are written as

xx xxC + xxNC (93)

(J = O + a

xz xzC xzNC (94)

The subscript "C" refers to the classical part of stresses. It has been

shown by Seewald 14 that GxxNC contains higher order terms in addition to

the term used in the present theory for nonuniform loading. The
H2

representation for O is, therefore, valid up to terms of 0(0- k ). The
xxX x

nonclassical term is seen to be a function of beam geometry and the

relative stiffness represented by kx . Equation (33A) for axx provides a
x~ 2x

good approximation for small values of the combination k H2 /X2 Thex

nonclassical axial stress effects are more significant for orthotropic

materials with large k values.
x

Introduction of Equations (93) and (94) into (25) leads to

kx 3 2
xzNCz ,xx (z 5 Z )  = 0 (95)

The above permits to estimate the nonclassical shear stress to be of

3 3 
H2

O(kaH /X ) and the error in equilibrium is of 0(c ). It can bex

concluded, therefore, that the error in the stress field is at most of
H3

Ob H kx). This is consistent with the original approximation for C.

Error Estimates in the Compatibility Equations

The relevant compatibility equation expressed in strains for planar

bonding is given by

i6~ ,.i~m.ll ile niiiilH
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C + ; - -' 0 (96)

It is convenient to express Equation (96) in terms of stresses.

•+ 1.--o 2(2; F V -- aEI: G1 3  zz,xx 2G 13 xzx

SuhBstitution of Equations (33A), (94), (23) and (24) into (96A) leads

to

* 2C. 13 E Q3IE xsNC,xz + 2.. 1

• 33 2E 1 3
('47)

The error represented by the underlined term is of 0 and

the nonclassical shear stress is of 0 H It

3 2G13 1

It is concluded, therefore, that the error in the stress field is at most

of 0  H 3- E - . This is consistent with the

E33.2G13 - '013)
(13

original approximation for 0 in Equation (33A) and with the error estimatexx

found for the equilibrium equations based upon Equation (95).

Error Estim aes in Displace a ents

The error in u due to the error in stresses may be estimated from

II
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equations (7) and (27).

C
u ((27A)

,x (E 11 E 11 z

The error in W may be estimated from Equations (7) and (29)

xz (29A)

,x z G 3

H3

T.e error in the stresses is of 0(0 kx). Consequently, from Equations

(27A) and (29A)

lError in ul 0( -  Hk) (98)
E11X2x

0 H3

JError in wi = 0( -2- - k ) (99)E x
E11X2x

In view of Equations (98) and (99), it is justified to omit terms of the

order indicated or higher in the expressions for displacements in Equations
13

(31) and (32). The underlined terms in these equations are of 0(-2-- _2 )

and 0(_ ), respectively. It is consistent to ignore these terms on

the basis of the above discussion, so the approximations made are

consistent.

Sumary

The study of the order of magnitude of the errors in stresses,

displacements, equilibrium equations and compatibility equations has

demonstrated that the present equations are self-consistent and provides a

valid approximation when the error terms are negligible.

This implies (H/X) is sufficiently small.

..... '-I m==milllmm m l l
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Relation to Reissner Theory

Reissner's plate theory equations are derived by using a

complementary energy principle 37 '38. The definitions of the kinematic

variables are clarified in the latter paper. Weighted kinematic variables

naturally arise due to the approach used to develop the theory. For planar

bending, they are given by

c
= w~c2 _ z2 ) d(00

-C
T yJ uz dz (101)

-c

In the following derivation, the Reissner variables are constructed

using present theory displacement expressions. Equations (100) and (31)

permit w to be written as

W 3 V13 M  (102)
IOE1 A

is identical to *2 given in Equation (37).

Ox 10A E ( 1 + 13 (37A)

Equations (104), (37A) and (18) allow the following to be written.

4, x 5GI3A
' 5C13A

The above is the Reissner relation for transverse shear strain. Intro-

4 d l I l l/ l li l l' ° -I. .
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duction of Equation (102) into (37A) and the use of Equation (18) results

i n

+2Q x 2 1 i

M=-E [11W 'x 3-V 13] (104)11 ,xx 5 3

By virtue of Equation (103), (104) may be rewritten in the following

familiar form:

qM 6 Q'xV 13
+I 105)

The above demonstrates that Reissner equations can be obtained

from the present theory, a fact which further establishes the validity of

the new equations. Also, it can be observed that all of the essential

physical effects do not appear in the Reissner theory. This is because a

knowledge of Reissner's variables does not permit the determination of the

response throughout the structure. The effect of nonclassical axial stress

on response is totally lost in the averaging process. However, by the use

of the relations presented above, the response in terms of Reissner

variables can be converted to obtain the response throught the structure

Beam Under Sinusoidal Loading

The problem under consideration is described in Figure 10. The two

dimensional elasticity solution for it is given in Reference 52 for an

isotropic material and in Reference 53 for an orthotropic material. A

solution to the above problem has been obtained by using the present

theory.
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r One half wavelength of the deformed beam is isolated for

consideration and is treated as being simply supported. Although only one

half wave length is considered the results are applicable to the case of
~nlrx

general loading of the form sin ---. This follows from the fact that each

half wavelength may be considered separately with an appropriate reduction

in beam length. The coordinate axes and notation are also given in Figure

19 10.

The boundary conditions to be enforced are given in Equations (39).

In addition, the following are also satisfied:

a

Gxx(Oz) fa xx(L,z) - 0 (106)

The transverse displacement component W for the above boundary

conditions is obtained by integrating Equation 35. The result is

[1 VH] (107)

The stresses xx, axz and 0zz at any section x, are given by

a 0 sin • - (108)

Xq 0  2 2 2nx
Q o =~ - --- (19

axz 4I (c2  z ) cos (109)

qo 0 s3  c2s 3  ros! - - L-) a in (110)
1 6

a
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Z ,w q =zq 0 S i

FX,

m H X U

L-- 2

Figure 10. Simply Supported Beam under Sinusoidally Distributed Loading
and Coordinate System

-!
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It is possible to obtain further refinements to the present theory

by retaining the underlined terms in Equations (31) and (32). The

constitutive relations are obtained as

V c3AQ 3
13 t Q (34A)

11 X31 6 ,xxx

M E IW + (A + '13 c2Q + 1311 Q c4 (35A)11 xx  5 x 2 + 280 ,xxx

SThe axial stress distribution is given by

a Hz _ k (3 3 c2.)
xx 1 31 5

5 4 5 2 3
+ iAXx.I c l 3c z -z LCz. cz+S- 'ill)

I 18 280 120 + 12 6

The corresponding transverse deflection is given by

W sn I ++ (112)

52 2 /280 (12

The underlined terms in Equations (111) and (112) are the refinements to

the present theory. Equations (109)-(110) will be called Approximation I

* and Equations (111) and (112) are Approximation II in the following

discussion. The purpose of the above refinements is to determine the

influence of the underlined terms in Equations (31) and (32) for this

I

I
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problem.

Results and Discussion

The results are presented in a common format and appear it. Figures

11-18. For the orthotropic beam, the following properties are chosen:

E = ffi 25, E = 1, G13 = 0.5 and V13 ' 0.25. These are the material

constants used in computing the exact solution in Reference 53.

The relative merits of each theory under consideration are assessed

on the basis of the percentage error with respect to the exact solution.

For the present purposes, a five percent error is assumed to be an

acceptable limit. The range of beam length-to-depth ratio in which the

error is less than five percent is considered the range of validity for the

theory. The point at which a theory just exceeds the limit is a cut off or

limit value of beam length-to-depth ratio.

The salient features of the results are listed below.

(1) Present approximations provide superior predictions for the

response.

(2) The improvements are more significant for orthotropic beams.

(3) The Approximation i appears to be only marginally better than

Approximation I. Approximation I is fully adequate for most applications,

therefore.

In Figure 11 a curve that corresponds to Reissner theory equations

(103) and (105) is also shown for comparison. The Reissner theory

prediction appears to be in excellent agreement with the exact solution.

However, this is illusory as the quantities under comparison are not the

same. Reissner's displacement variable is a weighted average.
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pigures 17 nd 18 shw the exist stress distribution throusa the

depth of boom at aidpen. Te agreemeant of Approximation It with the esact

is excellent while Approlmtion I can be comsidered satisfactory. The

effect of nonclasical axial stress is sen to be mre proeouss4d for Lhe

orthotropic beam. Tesis etreasa are predicted by both Approxi ton I

and Approim lim I ar the center of the cross section a seen in FiSure

IS. There w errors in the present approxiation in this portion of the

cross section. Naxim~n stresses are predicted quite well.

It is interesting to sote that a elasmwr or Timoebtako type twory

would have gives the seam result as clasical theory. Nonclaessical ait

stress coetribution is weo presest is those theories.

The trasverse ear atre and trsevwrse normal stress

distributions at sectisms .er* they wo adavi are presented in tables 2

and 3. low areemmet with the enct wlus is satisfactory.

OwseluOnO

a qualttatiwe validation Is provided through a co ieteey

analysis. The theory Is further established by thowitg that ISisseer

theory of plates, reduced to planer beadin, can be developed from the

preset theory. A quantitatiw vlidetlo is provided thro.i a

Correlative study with the sset Dolutios to a classic tvaswark problem -

- the rpesoSe of a simply saqported beam to a siewsoidally distribetod

loding.
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0.S 0.000 0.000 1.000 1.000

0.4 & M) 030 0.96)0.1

0.3 0.0 0.640 0.1 009

0.3 0.11) 0.010 O.P69 0.46

4L 1 0.465 0.960 0.610 a.*&$8

0.0 0.%04 5.66 0446? 0)00

40.5 0.969 0.900 0.))G O ~

40.? 0.01 00.3I01n 0.14

-0.) 0.11M 0.60 0.101 0.1016

4.4 0.4" 0)00 0W 0.014

Cam 0.0 .M6 0.M0 0.000
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OR 2G3A 6211 (v13  (127)

The abow cannot be satisfied identically for all z. In viev of the

approxiestion inherent in the stresses, it is desirable to satisfy Equation

(127) to the same degree of approxisation. The terms may be rearranged in

th tollowit uay

l , - _ I.&. I _..ox.3.....
On on 2G13 A x3 c

3 L(127A)

U 1 13 -1

Or #*rcin Ike first term is breckats to sero, the folloving equation

of ntion is obteined

n "Q a 1 (15A)

here I 0 s the rotatiom related variable given in quatioa (36). Since

the den rlised terme we at most of Woe k qution (liSA) implies
*A x

that the approxmltio ishereat in the eqution of motion is consistent

with that of te stresses sad compatibility equation. This is similar

to the static situatio of Cbepter VII. Equation (115A) is the overall

23
equation of mtion of the originl timoebheko theory . Equations (23),

(33)) and (119) yield the mecoed equation of motion es

Q90 NIFA (114)
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the static displcememt@.
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adn free vibration of base.

Prlonel ~We Frgmation
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Vesolli-ftle prodietions, %%ta we limo.t MONOu the epth, atit is

m pm ais Mromt wits the Oet sslutiom.
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Vibratism tvobloi

Vibtretim bdwvier for bem wgb weari., 4*4 r.ete to

obtained asm the pieodauro eaglieed is me1reo $1md 4

Typical Wesel%* fora . uimpd .rtbec..pic boom oe"NO to figmroe 16

and?)1. w rotor* to the lefuealli'Sser trow Itc for a St~Sy ov"Of9#4

beom. The diffi ao leSao* 00 She strai aml to piece or* oltabily

uwe to Cho"s setloesed is the flequamsy rette, pephe.

IMe roeut e or sropic ber n d for oml soppmd &% cla"

restraintse " bo bass obtaleed. IM ee.~ molov& show Ipp~oI

eareemmat of Croe wit ?imebashe On*!?p. There, to oftefti tt '.

uOdehiss of the besder rostraist, bet It to loss ptsme~c# th.* #

Nod is the static .Wlications.
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Is this dkopter, as eleimtry buckling theory 1. developed with the

9aid of tOe .dtims deioped to Clpter IT. IM prbary objective of the

preeet seedy isto spre bmeeliae loed predictios vith toe of

Timoehskh md eresuolli-tuler theories. Csmesqueecly, timearised

iqntitei we stltsed. a fully meliser, large displacement theory is

beyond the sops of CM preeint wr.

At the as et of bocktia, %qatie (22) is asoemed to provide first

approuiatim to the aial Stress. The ramiistg stressooS, bich are

enistent viti this appm imssi, are taken to be

a * -f ( 2 ) (23A)

8 j (E a) (245)

The ftam for a5a is sliabtly different from that of the corresponding

static distributios becoes of differences is the bouedary conditions.

Stress tme conditioes os a & + e surfaces are satisfied. to this respect,

it is meloemw to the dymic stress distribution gives in 241uti.. (24A).

Also, the stres"s we presed is term of the beediag momet R and its

derivatives oly. This is becaume Uquatiou (16) is s longer valid, but

the spatial diatributie. of stross over the cross sectioe remains similar



to the claseical case.

", follmwin th devolop"mt sed In Chapter IT# the esproe.o.e for

the beadiq moent to obtaised ea

N I 5 V N, kA (143)

kb io a Prameter defused L Bquatiem (142)

0 k . 3 all 3 V 3 (1I))- ",, 5 ",'",, (1"
13

The bsuklift Beustion

A overall equilibrium equatio La derived from static equilibrLm

of a deflected bee eln swt aceording to the adjaceet equilibrium approach.

figure 23 shme the foree m a deflected ben eleunt of fite length.

The mst equilibuium requires

N * PFVN0 (*N4)

N L the ameetat ment at - 0, wicb is snd to satisfy particular

boundary coeditimo. With the aid of aquatioms (143) and (11A), the

follme equation for the buckled configuratioe is obtaieeds

V --- - V .0 (145)

9ll (I - - )

Squtim (145) is ase to be of the same form as the classical column

equation, which my be obtained by setting as * as -* -0 is the

above.

For aiply sqpported eds, the boundary conditions to be enforced
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eve igive L Ilqustiem (39). A bcktlim load ratio, PY/P. is obtaliei

wLth e aid of qutiLe (39) Od (145).

L

PC is te bckliag loed md PR is the classical tuler bckliag load for a

simply supported eolsunm.

1231

L

* To V7 is the radeiu of grtLim of the be. cres Sectiom. ime ratio

L/O is tbe olmidernea Catio of the .limn.

aqetim (144) offers a osm Lt um fo a dsftiiton of

sleaderoee of a coum.

I (14A)

a is a umivoroal otemderaeo parameter defimed by

L L (144)

This parameter to a fmction of both gsmetry ad setiffs* of the coli

material. As Ito velue icoerases, classical oter colum behavior is

approeched. A horta colmol, them, imlies a depsit.e from classical

uler bdvior ed is characterised by mall values of a.



Results and ,iseasim.

The buckling load rati e r calculate for a orthocropic simply

soppored col with II/It -13 0 6 ad Vl * 0.. ?/P predictios

accordiag to th presst md Timehesko theory are O.529 4m4 0.49

reopectivolyotsr Uv- 20. ?iosheeb theory gives a lower value for the

becklieg lod ratio mWd is. therefore, overly conservative. eparturvo

from classical theory are substatial in this case.

if a flive Pere*t departure from classical theory is get as a

practical lilei to differeetiase between sleader and short colmus then a

threshold velue a1, for the mielvreal lesadersea persmtec ca be eksieed

from quatloa (147A). A useful approimtio is

a - 15 (19)
IL

The corvespdiag Womecrical elsedernes ratio, Up , values for me

isotropic serial with v a 0.3 and m orthotropic mterial with

itIt/13 0 30 sad V 3 0.) are 2.6 and 90, respectively. Tes. values

indicate that geoaetric sleederneso alone io not iedicative of Colwun

behavior.
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Ib poblem mclted wit kWretfemal effects to fiber

retiwed reels mnertU seitee have ban mntiomd rtlier. Ow of the

me eriess mmepeaeee of bvremchsl .eaditi.L to ae deradatin

of siffseh-re laed an sreeht-celtod e preop"Cte, t present

OeCy. eqia Is plsed a property dendatiom etleesa is otieles

critical applistcie. OilalS rOe"" Ame to tanseni selstree

diesributm we set studid.

Ustimmes of loe of pim e-n. dae to Opgro ul esd te tlq

for midireetimal eseetpoote are preested is this ckapter. Ortbotreptc

olutions derived is priewsa dmp e are utilted to obtain thee

*eOtimmee. li follwings nltime we applicable to QtdtfettieaI

am8pe. Ie aetinee doold be vied am providing qIitactive

infomtion for timott ieo poential practical ces!qice. tt is

anticipeted that omposite struetures with off ode ply lyspe will eibit

geater bysrthewuI effects.

Tbree amviritatl conditios listed below we selected for the

otudys



Condition as 1.OS Moisure Corntesg o

Condition CS 1."2 Mioure Ces ie noF
Codiclos A is for referes. Cediseio a reprosestes a realistic

sitlgut. The typicl lit of Miters, .0n by Wipt, is as

approamm is to ln-srem aircraft service. Coedition C s saturatCion for

a M 3501-4 Grophbisiopoq and represeens the sot eowre degradace

level aE the selected ,empratre. Typical properties haw base hose.

vith the aid t epesibs.l data provided to I feorm . The we

presented is Table 4.

The respmoe of an ortbotropie beem ader stesaoidelly dittributd

loading is ometed at &be three levels of bypotb sl coudititeise. The

results we proseeted it Pigures 31 ai 32. The response oder oeditios

A ad Is a little diffaeoto wile cndition C respo se w*ibit

soeb:tatial differencs ftram and I. The &xial stress distribution at

edp. ihous ia Fisgre 32 indiutes acceotated eoclassicel effect*

nder bUprOtbesul conditimi... " coetret, the Classical or a

Ti ooseeho-type theory fails to predict hyprotberuu seitivity of

bending stress. The tesaile stresse predicted sear the meatre of cros

section above O autral ads we de to erot is the present

pproaination is this portiom of the e. section.

Claqed ortbotropic beem results iourM8 the frequency tatio cheabe

due to hystotheral Ceditionin appear is Figure 33. The Clasping

4 cmditim corresponds to C2 restraint. The behavioral trends are gisilar

.... 0,unmumnm m mgm ~ l
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to Owe of this 6"e.. COM491s C AW4 obecoauiel tm.4e"

S~~S bevies bpVeibe"I eff ect* 40 bcil l..4. st a e1ael

& 404 ad heufe$ oiatmWo top~ Be. l. Ihewo 4C(e two beit.'.

A a.4 Imm W*m *ilowu~ fete for a nevil opcssd~ "140 C. *tooe

The40 for te **flo d vole. ate *oow 66W94#4 andl. geslas1 so

eatil two toe o bts mstl to ditlwemi ado me (*vv*Qes4404

,epto"Mike* wee iMted vick the old et to rn3~tst spot phe..slod te

to orSot 4 to at#5 soti a Parila Stam*inlsl pvepeyl of ohe

am 113 meetat at aw? W" somweolw aod mietti, eml40I to *wtoofod 44

* ttltb O@1M tenieW&U-4 *7' pout ad.S sOltilll tOC14. I~it

fIao dew pode m a ago eperstMM.e pwrnista of too miott mtet

Amd tow $s" tismem teept ec. TI fber pop"Cto ee"Saw co

#"Nis 1e same ad um $re" propnet.wo .at gomi t a.owt@d "y eghag

Sem eeasa l..

FWjet&6Wrn telfet# %&VW 61it infleee - the bontlkif 14ad teti. it

tae taop ot ue~mwstaes er - set ter tvw tsop of miaturv ceetvat

emmeittd. Ateteeted offeet*owh to eoiotee pica up sto .boot-wd io

the biewt tee Stw t . lb. wistac toleeep Hatt is

s16stat illy todweed at bi&%Wt me touftut*.

The follwing at* aeftleie baed asth above Stm~ro

I . to .1m adtephitt!IPMEiy type cw"ait@ atenials io t~e

abeav Splicotios As wet pos $*tie** ptwble is #isolated mitctaft Osage
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CONCASNO AM ArmMO I

A now engineering theoy for planar bending has been developed#

validated ad applied. Its predictive capabilities have been firmly

established tbrwo correlative studies with exact solutions aid a

systematic consistency analysis. The theory has been successfully

modified so as to apply to dynamic* end static buckling, It accounts for

three essential physical effects - -- transverse shear strain, transverse

normal strain and nonclassical axial stress. 7he equations are as simple

to apply as my transverse *eer deformation-type theory yet they provide

response throughout the structure.

The present theory predictions are superior to other comparable

engineering theoretical predictions. The theory yields exact results for

the case of uniformly distributed loading. For nonuniform loadings it has

been validated by moans of a thorough consistency analysis of a qualitative

nature and by quantitative correlative studies vith classic benchmark

problems.

The theory includes all information contained in leissner plate

theory for planar bending aid Stephen and Levinson's dynamic theory

specialised to thin rectangular cross section beme.

There is a sensitivity of the predictions to boundary restraint

uodeling. It is more pronounced in static bending response of statically

indeterminate structures. A boundary aos correction approach has been

presented and illustrated which permits localised boundary restraint to be
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accurately odeled.

Accentuated nonclassical axial stress effects are observed in the

respo n of bygro terslLy conditioned orthotropic beam. Other

engineering theories faiL to predict this interesting behavior.

Based upon the findings of present work, there are logical

suggestions for future research.

1. The study of alternative clm*o definitions has indicated the

presence of edV sone and decay length. These are much more pronounced

in orthotropic structures. A reappraisal ofcompoite materials testing

mothods when the specimens are relatively short is, therefore, a worthwhile

study.

2. Another important area of practical interest in buckling and

poetbuckling behavior of advanced composite structures. A large

displacement theory based upon the am equation* is recommended to be

developed to pursue the above issue.

3. Finite element models based on the present theory would be

useful in the mmerical analysis of practical structures.

I

0

I'
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OSTNfllUIC 81.D SOMLOT 10

A plae stress solution for flexural wave propagation in an

ortbotropic bai is developed. Tbis by suitable modification of elastic

constanes, can be used to obtain stresses and phase velocity in an

isfinitely wide slab. The results re used in the dynamic theory

validation study.

The Nooke'a Low for ortbotropic materials say be expressed as

a o ill I*ota+ 31 IfPS (-1

os a i 33 vVs *V 1 3 usj (A.2)

a X I 3  us * w,, ) (A.3)

The above wne obtained by inverting qustions (27) - (29) and using

squetions (7). i1 and i33 are given by

1l 11 Z11 M V 13 V 31) (A.4)

133 - 331(1 -V 3 1 V13) (A.5)

The equtions of motion in two dimensions are

o 0 *- (116)
zz zs,s can's

" -,,,,,,d,-,,nmml~in ainmll *n l nl*.(..7)
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Let the bea vibrate with circular frequency w • The lowest mode

has mce half-Wave in the z direction. The displacement components u sad w

may be taken as

=-

a 1 cos sn ut (A.6)

W Vs*in - Gi s 0U t a (A.?)1 L

and 9l are arbitrary coastents. p should be ciosn such that the above

satisty lquations (116) and (117). This condition leads to

60 (IC) 2 [I(u*Y +C2 (2Inv 3 , - Y *Y 03 1 1 3 )]

4 4 P (I + Y) 0 (A.8)
P P

There
2

c 2 a (A.9)

I,- t/233 (A.1o)

Y i * /G13 (A.11)

C - C/L (A.12)

I - - ~, lia l lill iI -
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Let PI and P2 be the roots of qtmtion (A.8). lbr the oolution for

a sod v iq be epreeoed a.

* C- $in atm A stab A3 stb2 (A. 13)

w sin eta [im , A cash Le 4cash P2](AJ4
L I c

A, - A. are arbitrary oo..taste. The relations seom thoe are obtaimed s

follows I Subtitutics of Squtime (A.6) ed (A.?) Lto (117) OSLO&

Squetime (A.2) mit (A.3) loade to

[113 + " 13 313 P 01333  - 12 ,2]a0(.5

J L L2

Iq4otim (A.15) simt be eatisfied Lmiependeaily by the slutione for a and

v aeociated with the coots p, an P2" Therefore frm (A.15) for the root

p it is required

A [5a ] Al [ 3 '01 3 . " 1  1  (A.1)

£quation (A.16) is eupreseed in the folloinag form for convenimce ia the

subsequnt mnlysie.

A2 - V1 A, (A.1?)
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, 1 -. , - 13  (A.1)

5i.larly

A4 12 A3 (A19

vFl 7 2 91 (A .20)

( c -*L
2  

.)
st arbitrary ontt i and A, are elimimnatd to produce a

frequency deteuinma by using the stress boundary cosditions gives in

xq--tian (61). The results are

(A.21)

A *Labp, "0

A1  is joh 1  2. Ji. 2  oeP 2 ' 0

SL(A.23)

heequitntly

...... . . . ''- ".,,, ."j3 f 12 p2lVllll . . .



Its

t P1 (pPaV 13 ) (pro-fit

8qutlim (AL24) L olvod mm ser ll to etlsa the nllest v.m1 of ¢p

ebo ̂as* vlocity parnstr ;1co , wbieb m uod to the dispersion come$

is obtaied from qatimao (t0I) and (A.9). The result to

s o  r * pC IIl (&.Is)

Aiia1 ftess Ditributimon

Ao g lmi fo o= L obtlied below witb the aid of Squtious

(AdI), (A.I3) aed (A.14).

JAI sa ! ( V1 F, -C) A3 910 !28 03LZ'2
*11

-tJ aiem Uot(.)

The Asivp L used is do vlidation study of dymme thet"y.

Treseerse Vislomm

With te aid of lquetinss (A.14) and (.19) V L OqNoooda.

a 8
we1P *O~l +FAc ! leis it I ie~t (A.27)

@mweeqmtly, V is give by
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